Exhaled methane concentration profiles during exercise on an ergometer.

نویسندگان

  • A Szabó
  • V Ruzsanyi
  • K Unterkofler
  • Á Mohácsi
  • E Tuboly
  • M Boros
  • G Szabó
  • H Hinterhuber
  • A Amann
چکیده

Exhaled methane concentration measurements are extensively used in medical investigation of certain gastrointestinal conditions. However, the dynamics of endogenous methane release is largely unknown. Breath methane profiles during ergometer tests were measured by means of a photoacoustic spectroscopy based sensor. Five methane-producing volunteers (with exhaled methane level being at least 1 ppm higher than room air) were measured. The experimental protocol consisted of 5 min rest--15 min pedalling (at a workload of 75 W)--5 min rest. In addition, hemodynamic and respiratory parameters were determined and compared to the estimated alveolar methane concentration. The alveolar breath methane level decreased considerably, by a factor of 3-4 within 1.5 min, while the estimated ventilation-perfusion ratio increased by a factor of 2-3. Mean pre-exercise and exercise methane concentrations were 11.4 ppm (SD:7.3) and 2.8 ppm (SD:1.9), respectively. The changes can be described by the high sensitivity of exhaled methane to ventilation-perfusion ratio and are in line with the Farhi equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling the dynamic of breath methane concentration profiles during exercise on an ergometer

We develop a simple model based on mass balance equations which describes the dynamic of breath methane concentration profiles during exercise on an ergometer. With the help of this model it is possible to calculate the endogenous production of methane in the large intestine by measuring breath gas concentration of methane.

متن کامل

Modeling of breath methane concentration profiles during exercise on an ergometer.

We develop a simple three compartment model based on mass balance equations which quantitatively describes the dynamics of breath methane concentration profiles during exercise on an ergometer. With the help of this model it is possible to estimate the endogenous production rate of methane in the large intestine by measuring breath gas concentrations of methane.

متن کامل

Isoprene and acetone concentration profiles during exercise on an ergometer.

A real-time recording setup combining exhaled breath volatile organic compound (VOC) measurements by proton transfer reaction-mass spectrometry (PTR-MS) with hemodynamic and respiratory data is presented. Continuous automatic sampling of exhaled breath is implemented on the basis of measured respiratory flow: a flow-controlled shutter mechanism guarantees that only end-tidal exhalation segments...

متن کامل

Effect of heterogeneous ventilation and nitric oxide production on exhaled nitric oxide profiles.

Elevated exhaled nitric oxide (NO) in the breath of asthmatic subjects is thought to be a noninvasive marker of lung inflammation. Asthma is also characterized by heterogeneous bronchoconstriction and inflammation, which impact the spatial distribution of ventilation in the lungs. Since exhaled NO arises from both airway and alveolar regions, and its level in exhaled breath depends strongly on ...

متن کامل

Adenosine level in exhaled breath increases during exercise-induced bronchoconstriction.

In asthmatic patients, airway obstruction provoked by exercise challenge is accompanied by an increase in plasma adenosine level. In this study, the current authors investigated if exercise-induced bronchoconstriction was associated with local changes of adenosine concentration in the airways. Oral exhaled breath condensate (EBC) collection (5-min duration) and forced expiratory volume in one s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of breath research

دوره 9 1  شماره 

صفحات  -

تاریخ انتشار 2015